JHARGRAM RAJ COLLEGE DEPARTMENT OF MATHEMATICS Academic Calendar for the Session 2018-2019 B.Sc. Semester-I (Honours) (CBCS)

Name of Faculty	Topic (From 15 th July 2018 to 6 th October		Topic (From 26 th November 2018 to
Members			12 December 2018)
Dr. S. Manna Associate Professor Head Of The Department	C1 (H) Unit-IV: Differential Equation Differential equations and mathematical models. General, particular, explicit, implicit and singular solutions of a differential equation. Exact differential equations and integrating factors.	P U	C1 (H) Unit-IV: Differential Equation Separable equations and equations reducible to this form, linear equation and Bernoulli equations, special integrating factors and transformations.
	Differential equations and mathematical models. General, particular, explicit, implicit and singular solutions of a differential equation. Exact differential equations and integrating factors.	J A	Equation Separable equations and equations reducible to this form, linear equation and Bernoulli equations, special integrating factors and transformations.
Sri. S. Sarkar Assistant Professor	C1(H) Unit-I: Calculus Hyperbolic functions, higher order derivatives, Leibnitz rule and its applications to problems of type $e^{ax+b}sinx$, $e^{ax+b}cosx$, $(ax+b)^nsinx$, $(ax+b)^ncosx$, concavity and inflection points, envelopes, asymptotes. C2(H) Unit-I: Algebra Polar representation of complex numbers, nth roots of unity, De Moivre's theorem for rational indices and its applications. Theory of equations: Relation between roots and coefficients, transformation of equation.	V A C A T I	C1(H) Unit-I: Calculus Curve tracing in cartesian coordinates, tracing in polar coordinates of standard curves, L'Hospital's rule, applications in business, economics and life sciences. C2(H) Unit-I: Algebra Theory of equations: Descartes rule of signs, cubic and biquadratic equation. Inequality: The inequality involving $AM \ge GM \ge HM$, Cauchy-Schwartz inequality.
	GE-I Unit-I: Calculus Hyperbolic functions, higher order derivatives, Leibnitz rule and its applications to problems of type $e^{ax+b}sinx$, $e^{ax+b}cosx$, $(ax+b)^nsinx$, $(ax+b)^ncosx$, concavity and inflection points, envelopes, asymptotes.	O N	GE-I Unit-I: Calculus Curve tracing in cartesian coordinates, tracing in polar coordinates of standard curves, L'Hospital's rule, applications in business, economics and life sciences.
	C1(H) Unit-II: Calculus Reduction formulae, derivations and illustrations of reduction formulae of the type $\beta \sin nx dx$, $\beta \cosh x dx$, $\beta \tan nx dx$, $\beta \sec nx dx$, $\beta (\log x)^n dx$, $\beta \sin^n x \sin^m x dx$, parametric equations, parameterizing a curve.	P U	C1(H) Unit-II: Calculus Arc length of a curve, arc length of parametric curves, area under a curve, area and volume of surface of revolution, techniques of sketching conics.

Sri. A. De Assistant Professor	C2(H) Unit-III: Algebra Systems of linear equations, row reduction and echelon forms, vector equations, the matrix equation Ax=b, solution sets of linear systems, applications of linear systems, linear independence. C2(H) Unit-IV: Algebra Introduction to linear transformations, matrix of a linear transformation, inverse of a matrix, characterizations of invertible matrices.	J A V A	C2(H) Unit- IV: Algebra Subspaces of Rn, dimension of subspaces of Rn, rank of a matrix, Eigen values, eigen vectors and characteristic equation of a matrix. Cayley-Hamilton theorem and its use in finding the inverse of a matrix.
	GE-1 Unit-III: Geometry Reflection properties of conics, rotation of axes and second degree equations, classification of conics using the discriminant, polar equations of conics. Spheres. Cylindrical surfaces. Central conicoids, paraboloids,	C A T	GE-1 Unit-III: Geometry Plane sections of conicoids, generating lines, classification of quadrics, illustrations of graphing standard quadric surfaces like cone, ellipsoid.
	C1(H) Unit-III: Geometry Reflection properties of conics, rotation of axes and second degree equations, classification of conics using the discriminant, polar equations of conics. Spheres. Cylindrical surfaces. Central conicoids, paraboloids	I O N	C1(H) Unit-III: Geometry Plane sections of conicoids, generating lines, classification of quadrics, illustrations of graphing standard quadric surfaces like cone, ellipsoid.
Sri. S. Roy Assistant Professor	C2(H) Unit-II: Algebra Equivalence relations. Functions, composition of functions, Invertible functions, one to one correspondence and cardinality of a set. Well-ordering property of positive integers, division algorithm, divisibility and Euclidean algorithm.		C2(H) Unit-II: Algebra Congruence relation between integers. Principles of Mathematical induction, statement of Fundamental Theorem of Arithmetic.
	GE-I Unit-II: Calculus Reduction formulae, derivations and illustrations of reduction formulae of the type $\beta \sin nx dx$, $\beta \cos x dx$, $\beta \tan nx dx$, $\beta \sec nx dx$, $\beta (\log x)^n dx$, $\beta \sin^n x \sin^m x dx$, parametric equations, parameterizing a curve.		GE-I Unit-II: Calculus Arc length of a curve, arc length of parametric curves, area under a curve, area and volume of surface of revolution, techniques of sketching conics.
	1 st Internal Assessment: 2 nd week of September 2018 PTM-3 rd Week of September		2 nd Internal Assessment: 1 st week of December 2018 Students' Seminar-3 rd Week of November

JHARGRAM RAJ COLLEGE DEPARTMENT OF MATHEMATICS Academic Calendar for the Session 2018-2019 B.Sc. Semester-II(Honours) (CBCS)

Dr. S. Manna Associate ProfessorC4(H) Unit-IV: Vector CalculusHead of The DepartmentC4(H) Unit-IV: Vector Calculuswith vector-valued functionslimits and continuity of vector
Associate ProfessorTriple product, introduction to vector functions, operationsHead of The Departmentwith vector-valued functionslimits and continuity of vector
Head of The Department with vector-valued functions limits and continuity of vector
iter of the bepartment with vector valued functions, mints and continuity of vector
functions, differentiation and integration of vector functions.
C3(H) Unit-I: Real Analysis
Review of algebraic and order properties of R, ε-
neighborhood of a point in R. Idea of countable sets,
uncountable sets and uncountability of R. Bounded above
sets, bounded below sets, bounded sets, unbounded sets.
Suprema and infima. Completeness property of R and its
equivalent properties. The Archimedean property, density of
Sri. S. Sarkar rational (and Irrational) numbers in R, intervals. Limit points
Assistant Professor of a set, isolated points, open set, closed set, derived set,
illustrations of Bolzano-Weierstrass theorem for sets, compac
sets in R, Heine-Borel Theorem.
GE-2 Unit-III: Algebra
Systems of linear equations, row reduction and echelon forms
vector equations, the matrix equation Ax=b, solution sets of
linear systems, applications of linear systems, linear
independence.
C3(H) Unit-II: Real Analysis
Sequences, bounded sequence, convergent sequence, limit of
a sequence, liminf, lim sup. Limit theorems. Monotone
sequences, monotone convergence theorem. Subsequences,
divergence criteria. Monotone subsequence theorem
(statement only), Bolzano Weierstrass theorem for sequences.
Cauchy sequence, Cauchy s convergence criterion.
C3(H) Unit-III: Keal Analysis
Infinite series, convergence and divergence of infinite series,
Cauchy criterion, tests for convergence: comparison test, limit
Sri. A. De comparison test, ratio test, Cauchy's nin root test, integral test
Assistant professor Alternating series, Leibniz test. Absolute and conditional
CE 2 Unit L. Algebra
GE-2 Unit-1: Algebra
De Moivre's theorem for rational indices and its applications
Theory of equations: Palation between roots and coefficients.
transformation of equation Descartes rule of signs, cubic and
highedratic equation

	Inequality: The inequality involving AM≥ GM≥ HM, Cauchy-
	Schwartz inequality.
	GE-2 Unit-IV: Algebra
	Introduction to linear transformations, matrix of a linear
	transformation, inverse of a matrix, characterizations of
	invertible matrices. Subspaces of Rn, dimension of subspaces
	of Rn, rank of a matrix, Eigen values, eigen vectors and
	characteristic equation of a matrix. Cayley-Hamilton theorem
	and its use in finding the inverse of a matrix.
	C4(H) Unit-I: Differential Equations
	Lipschitz condition and Picard's Theorem (Statement only).
	General solution of homogeneous equation of second order,
	principle of super position for homogeneous equation,
	Wronskian: its properties and applications, Linear
	homogeneous and non- homogeneous equations of higher
	order with constant coefficients, Euler's equation, method of
	undetermined coefficients, method of variation of parameters.
	C4(H) Unit-II: Differential Equations
	Systems of linear differential equations, types of linear
	systems, differential operators, an operator method for linear
	systems with constant coefficients,
	Basic Theory of linear systems in normal form, homogeneous
	linear systems with constant coefficients: Two Equations in
	two unknown functions.
	C4(H) Unit-III: Differential Equations
	Equilibrium points, Interpretation of the phase plane Power
Sri. S. Roy	series solution of a differential equation about an ordinary
Assistant Professor	point, solution about a regular singular point.
	GE-2 Unit-II: Algebra
	Equivalence relations. Functions, composition of functions,
	Invertible functions, one to one correspondence and
	cardinality of a set. Well-ordering property of positive
	integers, division algorithm, divisibility and Euclidean
	algorithm. Congruence relation between integers. Principles
	of Mathematical induction, statement of Fundamental
	Theorem of Arithmetic.
	1 st Internal Assessment: 2 nd Week of March 2019
	2 nd Internal Assessment: Last Week of April 2019
	Students' Seminar-3 rd Week of March

JHARGRAM RAJ COLLEGE DEPARTMENT OF MATHEMATICS Academic Calendar for the Session 2018-2019 B.Sc. Semester-III(Honours) (CBCS)

Name of Faculty	Topic (From 10th July 2018 to 6th October 2018)		Topic (From 26 th
Members			November 2018 to 12 th
			December 2018)
Dr. S. Manna Associate Professor Head Of The Department	 SEC-1(H): Logic and Sets:- Unit1 Introduction, propositions, truth table, negation, conjunction and disjunction. Implications, biconditional propositions, converse, contra positive and inverse propositions and precedence of logical operators. Propositional equivalence: Logical equivalences. Predicates and quantifiers: Introduction, quantifiers, binding variables and negations. Unit 2 Sets, subsets, set operations and the laws of set theory and Venn diagrams. Examples of finite and infinite sets. Finite sets and counting principle. Empty set, properties of empty set. Standard set 	P U J A	SEC-1(H): Logic and Sets:- Unit 3 Difference and Symmetric difference of two sets. Set identities, generalized union and intersections. Relation: Product set. Composition of relations, types of relations, partitions, equivalence Relations with example of congruence modulo relation. Partial ordering relations, n- ary relations.
Sri. S. Sarkar Assistant Professor	Operations: classes of sets. Power set of a set. C7(H): Numerical Methods:- Unit 1 Algorithms. Convergence. Errors: relative, absolute. Round off. Truncation. Unit 2 Transcendental and polynomial equations: Bisection method, Newton's method, secant method, Regula-falsi method, fixed point iteration, Newton-Raphson method. Rate of convergence of these methods. Unit 3 System of linear algebraic equations: Gaussian elimination and Gauss Jordan methods. Gauss Jacobi method, Gauss Seidel method and their convergence analysis. LU decomposition. Unit 4 Interpolation: Lagrange and Newton's methods. Error bounds. Finite difference operators. Gregory forward and backward difference interpolation. Numerical differentiation: Methods based on interpolations, methods based on finite differences.	V A C A T I O N	C7(H): Numerical Methods:- Unit 5 Numerical Integration: Newton Cotes formula, Trapezoidal rule, Simpson's 1/3 rd rule, Simpsons 3/8th rule, Weddle's rule, Boole's Rule. midpoint rule, Composite trapezoidal rule, composite Simpson's 1/3 rd rule, Gauss quadrature formula.The algebraic eigen value problem: Power method. Approximation: Least square polynomial approximation. Unit 6 Ordinary differential equations: The method of successive approximations, Euler's method, the modified Euler method, Runge-Kutta methods of orders two and four.

Sri. A. De Assistant Professor	C6(H): Group Theory :- Unit 1 Symmetries of a square, dihedral groups, definition and examples of groups including permutation groups and quaternion groups (through matrices), elementary properties of groups. Unit 2 Subgroups and examples of subgroups, centralizer, normalizer, center of a group, product of two subgroups. Unit 3 Properties of cyclic groups, classification of subgroups of cyclic groups. Cycle notation for permutations, properties of permutations, even and odd permutations, alternating group, properties of	P U J A	C6(H): Group Theory :- Unit 4 External direct product of a finite number of groups, normal subgroups, factor groups, Cauchy's theorem for finite abelian groups. Unit 5 Group homomorphisms, properties of homomorphisms, Cayley's theorem, properties of isomorphisms. First, Second and Third isomorphism theorems.
Sri. S. Roy Assistant Professor	 cosets, Lagrange's theorem and consequences including Fermat's Little theorem. C5(H):Theory of Real Functions :- Unit 1 Limits of functions (ε - δ approach), sequential criterion for limits, divergence criteria. Limit theorems, one sided limits. Infinite limits and limits at infinity. Continuous functions, sequential criterion for continuity and discontinuity. Algebra of continuous functions. Continuous functions on an interval, intermediate value theorem, location of roots theorem, preservation of intervals theorem. Uniform continuity, non-uniform continuity criteria, uniform continuity theorem. Unit 2 Differentiability of a function at a point and in an interval, Caratheodory's theorem, algebra of differentiable functions. Relative extrema, interior extremum theorem. Rolle's theorem. Mean value theorem, intermediate value property of derivatives, Darboux's theorem. Applications of mean value theorem to inequalities and approximation of polynomials. Unit 3 Cauchy's mean value theorem. Taylor's theorem with Lagrange's form of remainder, Taylor's theorem with Cauchy's form of remainder, application of Taylor's theorem to convex functions, relative extrema. 1st Internal Assessment: 2nd week of Sentember 2018 	V A C A T I O N	C5(H): Theory of Real Functions :- Unit 3 Taylor's series and Maclaurin's series expansions of exponential and trigonometric functions, ln (1 + x), 1/(ax + b) and(x+1)n. Application of Taylor's theorem to inequalities. Introduction to Metric Space:- Unit 4 Metric spaces: Definition and examples. open and closed balls, neighborhood, open set, interior of a set. Limit point of a set, closed set, diameter of a set, subspaces, dense sets, separable spaces. 2 nd Internal Assessment: 1st week of December 2018
	2 nd week of September 2018 PTM-3 rd Week of September		 Internal Assessment: 1st week of December 2018 Students' Seminar-3rd Week of November

JHARGRAM RAJ COLLEGE DEPARTMENT OF MATHEMATICS Academic Calendar for the Session 2018-2019 B.Sc. Semester-IV(Honours) (CBCS)

Name of the	Topics (From 2 nd January 2019 to 6 th May 2019)
Faculty Members	
	SEC-2(H): Graph Theory
	Unit 1
	Definition, examples and basic properties of graphs, pseudo graphs,
	complete graphs, bipartite graphs isomorphism of graphs.
	Unit 2
Dr. S. Manna	Eulerian circuits, Eulerian graph, semi-Eulerian graph, theorems,
Associate Professor	Hamiltonian cycles, theorems Representation of a graph by matrix, the
Head of The	adjacency matrix, incidence matrix, weighted graph.
Department	Unit 3
Depui intent	Travelling salesman's problem shortest path. Tree and their properties
	spanning tree Diikstra's algorithm Warshall algorithm
	C8(H):Riemann Integration and Series of Function
	Unit 1
	Riemann integration: inequalities of upper and lower sums Darbaux
	integration Darbaux theorem Riemann conditions of integrability
	Riemann sum and definition of Riemann integral through Riemann sums
	equivalence of two definitions. Riemann integrability of monotone and
	continuous functions, properties of the Riemann integral: definition and
	integrability of niecewise continuous and monotone functions
	Intermediate Value theorem for Integrals: Fundamental theorem of
	Integral Calculus
	Unit 2
Sri S Sarkar	Unit 2 Improper integrals, Convergence of Reta and Camma functions
Assistant Professor	Unit 3
Assistant I Tutessui	Deint J
	on continuity, derivability and integrability of the limit function of a
	sequence of functions. Series of functions:
	Theorems on the continuity and derivability of the sum function of a
	series of functions: Cauchy criterion for uniform convergence and
	Weierstrass M Test
	Unit A
	Fourier series: Definition of Fourier coefficients and series Reimann
	Labasque lamma Bassal's inequality Parsaval's identity Dirichlet's
	condition Examples of Fourier expansions and summation results for
	condition. Examples of Fourier expansions and summation results for
	Junit 5
	Unit J Dowar series radius of convergence Couchy Hadamard theorem
	Differentiation and integration of nower series: A bal's theorem:
	Weierstress approximation theorem
	weierstrass approximation theorem.

	C10(H): Ring Theory and Linear Algebra I
	Unit 1
	Definition and examples of rings, properties of rings, subrings, integral
	domains and fields, characteristic of a ring. Ideal, ideal generated by a
	subset of a ring, factor rings, operations on ideals, prime and maximal
	ideals.
	Unit 2
	Ring homomorphisms, properties of ring homomorphisms. Isomorphism
Sri. A. De	theorems I, II and III, field of quotients.
Assistant professor	Unit 3
	Vector spaces, subspaces, algebra of subspaces, quotient spaces, linear
	combination of vectors, linear span, linear independence, basis and
	dimension, dimension of subspaces.
	Unit 4
	Linear transformations, null space, range, rank and nullity of a linear
	transformation, matrix representation of a linear transformation, algebra
	of linear transformations. Isomorphisms. Isomorphism theorems,
	invertibility and isomorphisms, change of coordinate matrix.
	C9(H): Multivariate Calculus
	Unit 1
	Functions of several variables, limit and continuity of functions of two or
	more variables
	Partial differentiation, total differentiability and differentiability,
	sufficient condition for differentiability. Chain rule for one and two
	independent parameters, directional derivatives, the gradient, maximal
	and normal property of the gradient, tangent planes, Extrema of functions
	of two variables, method of Lagrange multipliers, constrained
	optimization problems
a • a •	Unit 2
Sri. S. Roy	Double integration over rectangular region, double integration over non-
Assistant Professor	rectangular region, Double integrals in polar co-ordinates, Triple
	integrals, triple integral over a parallelepiped and solid regions. Volume
	by triple integrals, cylindrical and spherical co- ordinates. Change of
	variables in double integrals and triple integrals.
	Unit 3
	Definition of vector field, divergence and curl.
	Line integrals, applications of line integrals: mass and work.
	Fundamental theorem for line integrals, conservative vector fields,
	Independence of path.
	Ulli 4 Green's theorem surface integrals integrals over noremetrically defined
	Surfaces Stoke's theorem The Divergence theorem
	1 st Internal Assessment: 2 nd Wook of March 2010
	2 nd Internal Assessment: I ast Wook of April 2019
	Students' Seminar-3 rd Week of March
	BIUUUIIIS BUIIIIIAI-J VICEN VI WALUI

JHARGRAM RAJ COLLEGE DEPARTMENT OF MATHEMATICS Academic Calendar for the Session 2018-2019 B.Sc. Part-III (Honours)

Name of Faculty	Topic(From 10 th July 2018 to 6 th		Topic(From 26 th November 2018 to 28 th
Members	October 2018)	_	March 2019)
	Paper-VI, Group-C: Discrete		Paper-VI, Group-C: Discrete
	Mathematics :- Sets and		Mathematics :- Bipartite Graphs,
	Propositions: Cardinality, principle		Necessary and Sufficient condition for a
	of inclusion and exclusion,		Bipartite Graph, Weighted Graphs, Walk,
	connectives, Tautology and	P	Path, Cycles, Circuit, Euler Graph,
Dr. S. Manna	contradictions, equivalence formula.		Konisberg Bridge Problem. Trees: Basic
Associate Professor		TT	properties, spanning tree.
Head Of The	Graph Theory: Graphs: undirected	\cup	
Department	graphs, Directed graphs, basic	T	Partial order relations and Lattices:
	properties, complete graph,	J	Definitions of poset, lattice, chain and anti-
	complement of a Graph.		chain, properties of a lattice, distributive
		A	lattice with properties.
			Discrete numeric functions and generating
			functions.
	Paper-VI. Group-D:		Paper-VI. Group-D: Mathematical
	Mathematical Modeling:-	T 7	Modeling: - Mathematical models with their
	Introduction, Basic steps of		formulation, solution, interpretation and
	Mathematical modeling and its		limitations (i)Single species models
	utility, preliminary concept of	A	(Exponential and Logistic growth), (ii) Two
	stability of differential equation.		species population models (Two competing
			species and Prey-prediator).
			Simple epidemic model (SI) with the
		\mathbf{A}	formulation, solution, interpretation and
			limitations.
	Paper-VII, Group-A: Elements of		Paper-VII, Group-A: Programming
	computer Science:- Elementary	Т	Languages: Either FORTRAN 77 or
	computers programming: Concepts		ANSI C
	of machine language, assembly	Ω	FORTRAN 77: Fixed and floating point
	language, different high level		modes, constants and variables, subscripted
	languages and compilers.	NT	variables, arithmetic expression, library
	Application of computer		functions, statements, and arithmetic, input,
	programming: Different steps of		output and control statements. Arithmetic
	solving a problem by a Computer.		assignment statement, GO TO, Arithmetic
	Computer oriented algorithm.		IF, Logical IF, BLOCK IF, DO,
	Flowchart.		CONTINUE, READ, WRITE, PRINT,
	Boolean Algebra and		STOP, END, DIMENSION and FORMAT
Sri. S. Sarkar	applications:-		(List directed, I, E,F, X and H specification
Assistant Professor	Binary arithmetic: binary numbers,		only). Two dimensional arrays, arithmetic
	binary-to-decimal conversion,		statement, functions subprogram, subroutine
	decimal-to- binary conversion,		subprogram. strings.
	Addition, subtraction, multiplication		ANSI C: Character set in ANSI C. Key
	and division of binary numbers,		words: if, while, do, for, int, char, float, etc.
	Algebra of sets. Definition of		Data type: character, integer, floating point,

Boolean algebra by Huntington postulates, Two elements Boolean algebra and other examples, principle of duality, basic theorems,	Р	etc. Variables, Operators: \Box , $\Box \Box$, !, <> , etc. (arithmetic, assignment, relational, logical, increment, etc.). Expressions: arithmetic and logical
Boolean functions, truth table, disjunctive and conjunctive normal forms, Theorem on construction of a	U	expressions. Standard input/output. Use of while, if-else, for, do - while, switch, continue, etc. Arrays, strings, user defined
Boolean function from a truth table and examples. Different binary operations and operators: AND, OR,	J A	function. Header File. The various problems on Mathematics are to be studied during programming in
NOT, NAND, NOR. Bistable devices, Logic gates-AND, OR, NOT, NAND, NOR (including		FORTRAN 77 or in C:
block diagram and input-output table). Logic gates representations for Boolean expressions, Binary half adder and full adder		
Paper-VIII, Group-D: Computer		Paper-VIII, Group-D: : Computer
Practical:- List of programs using FORTRAN or C	V A	Practical:- List of programs using FORTRAN or C Problems on strings (i)Counting of words in a string, (ii) Palindrome testing, (iii)
General programs Area of circle, triangle, (ii) Summation of finite and convergent	C A	Conversion from upper case to lower case and lower case to upper case, (iv) Sorting of names, (v) Rewrite name of a person in about form (vi) accepting a sub string
(iii) Maximum and minimum among three number and n numbers, (iv) Roots of a quadratic equation (v)	T	among a set of strings. Problems on Numerical Methods (i)Interpolation by Lagrange's and Newton
G.C.D. and L.C.M. between two integers, (vi) Testing of prime numbers, (vii) Split a number into	1 0	forwards difference methods, (ii) Finding of roots by bisection, regula-falsi, fixed point iteration and Newton- Rapshon methods,
digits, (vii) Computation of ${}^{n}P_{r}$ and ${}^{n}C_{r}$, (viii) Searching and sorting (bubble	N	(iii) Integration by trapezoidal and Simpson1/3 rule, (iv) Solution of a system ofequations by Gauss-Siedal method, (v)
sort only). Problems on matrices Addition and subtraction, (ii)		Solution of a differential equation by Runge-Kutta methods. Problems on Statistical methods
Product, (iii) Trace and (iv) Transpose.		 (i)Preparation of grouped frequency table, (ii) Mean, median and mode for simple and grouped frequency distribution, (iii) Standard deviation, mean deviation, (iv) Moments, skewness and kurtosis, (v)
		straight and parabolic curve.
Paper-VII, Group B: Mathematical Theory of Probability:- Concepts of		Paper-VII, Group-B: Mathematical Theory of Probability:- Discrete and continuous distributions, probability
mathematical probability, Random experiments, The idea of probability as a long run relative frequency.		distribution function, expectation, variance, moments of a random variable, basic ideas of moment generating function (m.g.f.) and
Sample space, mutually exclusive		characteristic function, dependent and

		1	
	events, exhaustive events. Union of		independent trials. Bernoulli's trials,
	events, intersection of events,		Binomial law, Joint distribution of two
	Kolmogorov's axiomatic definition	D	random variables and transformation of
	of probability, classical definition as	I	variables.
	a special case of the axiomatic,	ТТ	Marginal and conditional distributions, Sum
	theorems on the probability of the		law and product law of expectation, two
	union of an events. Theorem of total	T	dimensional expectation and conditional
	probability Boole's inequality	J	expectation. Correlation and regression.
	conditional probability theorem of		Tchebycheff's inequality convergence in
	compound probability, theorem of		probability Bernoulli's limit theorem weak
	inverse probability (Baye's		law of large numbers. Central limit theorem
	theorem) Statistical independence		(statement only) Doissons approximation to
Sri Abboy De	of events, independent trials		Statement only). Forssons approximation to
Assistant Professor	or events, independent trials,		Dinomial distribution, Normal
Assistant 1 10105501	random variables.		approximation to Binomial distribution.
			Detailed understanding of hyper-geometric
			binomial, negative binomial and Poisson
			distributions and (b) rectangular, gamma,
			beta and normal distributions, x^2 and t
			distributions.
	Paper-VII, Group-C:		Paper-VII, Group-C: Mathematical
	Mathematical Statistics:-	X 7	Statistics:- Random sampling, sampling
	Collection of data, Tabulation and		distribution of a statistic. Sampling
	graphical representation of data,		distribution of a sample means (normal
	Qualitative and quantitative	\mathbf{A}	population case) and sample proportion.
	characteristics of discrete and		Statistical inference. Point estimation of a
	continuous variables. Frequency	U	parameter unbiased and consistent estimates.
	table and its graphical		Method of maximum likelihood
	representation Measures of central	A	Bivariate data Scattered diagram simple
	tendency: mean (simple and		correlation and regression curve fitting
	weighted) median mode Measures	' '	(linear and parabolic)
	of dispersion: range mean deviation		(inical and parabolic).
	of dispersion. Tange, mean deviation		Statistical hypothesis: Simple and
	of variation momenta alcounage and		composite critical ragion of a test. Type I
	of variation, moments, skewness and		and Tune. II arrow
	Kurtosis.		and Type- If erfor.
			Confidence interval and confidence
			coefficients: Confidence interval for a
			single variance (normal distribution),
			Neyman-Pearson theorem (statement only).
			Testing of Hypothesis (large and small
		-	sample, Normal distribution only).
	Paper-VIII, Group-A: Numerical		Paper-VIII, Group-A: Numerical
	Analysis:-Basic concepts:		Analysis:-Numerical integration: Newton's
	approximation of numbers,		Cotes formulae, trapezoidal rule, Simpson's
	significant figures, absolute, relative		one- third rule and inherent errors,
	and percentage errors, truncation		Weddle's rule, Summation of finite series
	and round off errors, accumulation		by Euler- Maclaurin series (statement only).
	and propagation of errors.		
			Solution of equations (algebraic and
	Polynomial interpolation and	n	transcendental): Solution of a single
	application: Lagrangian	ľ	equation by –
	interpolation problem. Linear	┱᠇	Graphical method.
	interpolation formula. Lagrange's	$ \mathbf{U} $	Method of bisection,

	formula.	Т	Regula falsi method,
		J	Fixed point iteration method,
	Differences: Forward, backward and		Newton-Raphson method.
	divided difference tables linear	A	Geometrical interpretation of these
	difference equations with constant		methods. Convergence of fixed-point
	coefficients Newton's general		iteration and Newton Papeson method
	internolation formula with		neration and Newton-Raphson method.
	interpolation formula with		Cause elimination Cause Sidel method for
	remainder term, Newton's forward		Gauss-emmination, Gauss-Siedai method for
	and backward formulae, error in		the solution of a system of linear equations.
	these formulae. Numerical		Solution of differential equations: Solution
	differentiation based on Newton's		of a first order differential equation by
	forward and backward formulae.		Euler's method and modified Euler's
			method. Runga-Kutta (2nd and 4th order)
			methods (emphasizing the problem only)
		N Z	
	Paper-VI, Group-A:Rigid	V	Paper-VI, Group-A: Rigid Dynamics:-
	Dynamics:- Moment and product of		Equations of motion of a rigid body moving
	inertia, Momental ellipsoid,	A	in two dimensions. Expression for kinetic
	Equimomental system, Principal		energy and angular momentum about the
	axis, D'Alembert's principle.		origin of a rigid body moving in two
	D'Alembert's equations of motion.		dimensions. Two dimensional motion of a
	Principles of moments. Principles of	A	solid of revolution down a rough inclined
	conservations of linear and angular		plane. Necessary and sufficient condition
	momentum Independence of the		for pure rolling. Two dimensional motion of
	motion of centre of inertia and the	-	a solid of revolution moving on a rough
	motion relative to the centre of		horizontalplane
	inortia. Dringinla of anorgy		nonzontarpiane.
	Dringing of concernation of concerns		Equations of motion under impulsive
	Principle of conservation of energy.		foreas Equation of motion shout a fixed
			forces. Equation of motion about a fixed
	Equation of motion of a rigid body	1	axis under impulsive forces. Centre of
	about a fixed axis. Expression for		percussion. To show that (1) if there is a
	kinetic energy and moment of		definite straight line such that the sum of the
	momentum of a rigid body moving		moments of the external impulses acting on
	about a fixed axis. Compound		a system of particles about it vanishes, then
	pendulum. Interchangeability of the		the total angular momentum of the system
	points of a suspension and centre of		about that line remains unaltered, (ii) the
	oscillation. Minimum time of		change of K.E. of a system of particles
	oscillation. Reaction of axis of		moving in any manner under the application
Sri. S. Rov	rotation.		of impulsive forces is equal to the work
Assistant Professor			done by the impulsive forces. Impulsive
		D	forces applied to a rigid body moving in two
			dimensions.
	Paper-VI, Group-B:	TT	Paper-VI, Group-B: Hydrostatics:-
	Hydrostatics:-Definition of Fluid.	$ \mathbf{U} $	Equilibrium of fluids in given fields of
	Perfect Fluid, Pressure. To prove	T	force: Definition of field of force. line of
	that the pressure at a point in a fluid	J	force. Pressure derivative in terms of force.
	in equilibrium is the same in every		Surface of equi-pressure. To find the
	direction. Transmissibility of liquid	$ \mathbf{A} $	necessary and sufficient conditions of
	pressure. Pressure of heavy fluids		equilibrium of a fluid under the action of a
	To prove –		force whose components are X Y Z along
	In a fluid at rest under gravity the		the co-ordinate axes. To prove (i) that
	necentre is the same at all points in		surfaces of equal pressure are the surfaces
L	pressure is the same at all points in		surfaces of equal pressure are the surfaces

the same horizontal plane		1
In a homogeneous fluid at rest under gravity the difference between the pressures at two points is proportional to the difference of their depths. In a fluid at rest under gravity horizontal planes are surfaces of equal density. When two fluids of different densities at rest under gravity do not mix, their surface of separation is a horizontal plane. Pressure in heavy homogeneous liquid. Thrust of heavy homogeneous liquid of plane surfaces. Definition of centre of pressure. Formula for the depth of the centre of pressure of a plane area. Position of the centre of pressure. Centre of pressure of a triangular area whose angular points are at different depths. Centre of pressure of a circular area. Position of the centre of pressure referred to co-ordinate axes through the centriod of the area. Centre of pressure of an elliptical area when its major axis in vertical or along the line of greatest slope. Effect of additional depth on centre of pressure.	V A C A T I O N	 Intersecting orthog (ii) when the force the surfaces of equ equipotential surfa of equal density. T equations of the su and density. Rotating fluids. To at any point and th pressure when a m liquid contained in uniformly about a T Thurst on Curved S The stability of the bodies. Definition, of a floating body, floatation, surface propositions about displacements. To stability.
 Paper-VIII, Group-B:Real Analysis-III:- Real Valued functions defined on a subset (may not be an interval) of real numbers; limit of a real-valued function at a limit point of the domain (subset of <i>R</i>) of the functions, sequential and Cauchy's criteria for the existence of a limit of a function at a point. Algebra of limits in this context. Continuity of a function at a point on a subset of <i>R</i>, Sequential criteria for continuity at a point, continuity on a set. Algebra of continuous functions as a consequence of algebra of limits, continuity of composites of continuous functions. Uniform continuity on a set. If f is continuous on a closed and bounded subset of R, then f is uniformly 		Paper-VII, Group Sequence of function uniform convergent boundedness, contrand integrability of of uniform convergence Series of functions convergence, Cauce convergence, Bourn of the sum function convergence. Term differentiation. We uniform and absolut Power series: Cauce Radius of convergence convergence of por related properties, series. Fourier series. Dim

intersecting orthogonally the fines of force. (ii) when the force system is conservative, the surfaces of equal pressure are equipotential surfaces and are also surfaces of equal density. To find the differential equations of the surfaces of equal pressure and density.

Rotating fluids. To determine the pressure at any point and the surfaces of equal pressure when a mass of homogeneous liquid contained in a vessel, revolves uniformly about a vertical axis. Thurst on Curved Surface.

The stability of the equilibrium of floating bodies. Definition, stability of equilibrium of a floating body, metacentre, plane of floatation, surface of buoyancy. General propositions about small rotational displacements. To derive the condition for stability.

Paper-VII, Group-B: Real Analysis-III:-Sequence of functions: Pointwise and uniform convergence, Cauchy's criteria for Uniform convergence, Weierstrass M-test, boundedness, continuity, differentiability and integrability of the limit function in case of uniform convergence. Series of functions: Pointwise and uniform convergence, Cauchy's criteria for uniform convergence, Boundedness and continuity

of the sum function in case of uniform convergence. Term by term integration and differentiation. Weierstrass M- test for uniform and absolute convergence. Power series: Cauchy-Hadamard theorem, Radius of convergence, uniform convergence of power series and their related properties, uniqueness of a power series.

Fourier series. Dirichlet's condition of

continuous there. If f is uniformly continuous on a subset of real numbers then it is uniformly continuous on the closure of S.	convergence at a point. Full range and half range series.
Paper-VIII, Group-C: Linear Algebra-II:- Linear Transformation on Vector spaces: Definition, Null space, range space, rank and nullity, Sylvester's law.	Paper-VIII, Group-C: : Linear Algebra- II:- Linear Transformation on Vector spaces: Sylvester's law, simple applications, non-singular linear transformation inverse of linear transformation. An (m x n) real matrix as a linear transformation from $P^n \leftarrow P^m$
1 st Internal Assessment: 2 nd week of September 2018 PTM-3 rd Week of September	2 nd Internal Assessment: 2 nd week of March 2019 Students' Seminar-3 rd Week of November

JHARGRAM RAJ COLLEGE DEPARTMENT OF MATHEMATICS Academic Calendar for the Session 2018-2019 B.Sc. Semester-I (Gneral) (CBCS)

Name of Faculty Members	Topic (From 15 th July 2018 to 6 th October 2018)	P	Topic (From 26 th November 2018 to 12 th December 2018)
Sri. A. De Assistant Professor	DSC-1A(CC-1): Differential Calculus Limit and Continuity (ε and δ definition), Types of discontinuities, Differentiability of functions, Successive differentiation, Leibnitz's theorem, Partial differentiation, Euler's theorem on homogeneous functions.	J A V	DSC-1A(CC-1): Differentia Calculus Tangents and normals, Curvature, Asymptotes, Singular points, Tracing of curves.
Sri. S. Roy Assistant Professor	DSC-1A(CC-1): Differential Calculus Parametric representation of curves and tracing of parametric curves, Polar coordinates and tracing of curves in polar coordinates. Rolle's theorem, Mean Value theorems, Lagrange and cauchy theorems. Taylor's theorem with Lagrange's and Cauchy's forms of remainder, Power series and its convergences.	C A T I O N	DSC-1A(CC-1)Differential Calculus Taylor's series, Maclaurin's series of sin x, cos x, ex, log(l+x), (l+x)m, Maxima and Minima, Indeterminate forms.
			Internal Assessment: 1st week of December 2018

JHARGRAM RAJ COLLEGE DEPARTMENT OF MATHEMATICS Academic Calendar for the Session 2018-2019 B.Sc. Semester-II(General) (CBCS)

Name of the Faculty Members	Topics (From 2 nd January 2019 to 6 th May 2019)			
	DSC-1B(CC-2): Differential Equations			
	First order exact differential equations. Integrating factors,			
	rules to find an integrating factor. First order higher degree			
	equations solvable for x, y, p. Methods for solving higher-			
Sri. A. De	order differential equations. Basic theory of linear			
Assistant professor	differential equations, Wronskian, and its properties. Solving			
	a differential equation by reducing its order. Linear			
	homogenous equations with constant coefficients, Linear			
	non-homogenous equations, The method of variation of			
	parameters, The Cauchy-Euler equation, Simultaneous			
	differential equations, Total differential equations.			
	DSC-1B(CC-2): Differential Equations			
	Order and degree of partial differential equations, Concept			
	of linear and non-linear partial differential equations,			
Sri. S. Roy	Formation of first order partial differential equations, Linear			
Assistant Professor	partial differential equation of first order, Lagrange's			
	method, Charpit's method. Classification of second order			
	partial differential equations into elliptic, parabolic and			
	hyperbolic through illustrations only.			
Internal Assessment: 2 ⁴⁴ Week of April 2019				

JHARGRAM RAJ COLLEGE DEPARTMENT OF MATHEMATICS Academic Calendar for the Session 2018-2019 B.Sc. Part-II (General)

Dr. S. Manna Associate Professor Head Of The Definition an acquaintance (no proof). Dr. S. Manna Associate Professor Head Of The Definition of a single real variable defined on interval, keir graphs, Algebra of initis and continuity (no proof). Definition and acquaintance (no proof). Definition an	Name of Faculty Members	Topic (From 10 th July 2018 to 6 th October 2018)		Topic (From 26 th November 2018 to 26 th April 2019)
Paper-II, Group-A: Differential Calculus:-Concept of Tainal number , Sequence of numbers, concept of limit of a sequence, Monotonic sequence, A supremum and infimum of a sequence; A convergent sequence is bounded and has a unique limit, Bounded and monotonic sequence is convergent. $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$ Statement of the theorems on limits of sequence, Cauchy sequence, Statement of Cauchy's general principle of convergence, cauchy sequence, Statement of Cauchy's general principle of convergence, Cauchy sequence, Statement of Cauchy's general principle of convergence, cauchy sequence, Statement of clauser of the theorems on limits of sequence, Cauchy's convergence thore of the transmitted theorem and estatement of cauchy's general principle of convergence, cauchy's convergence (Only statement). Series of non-negative trains: Statement of comparison test. D' Alembert ratio test, Cauchy's inthroot test and Raabe's test. Simple applications. Function of a single real variable defined on an interval, their graphs, Algebra of limits and continuity (no proof). Definition and acquaintance (no proof) Definition and acquaintance (no proof) Definition and acquaintance (no proof) Definition and acquaintance (no proof). Definition and acquaintance (no proof). Deri			-	20 April 2017)
approximations, relation between continuity and derivability.	Dr. S. Manna Associate Professor Head Of The Department	Paper-II, Group-A: Differential Calculus:- Concept of rational number, Irrational number, Real number. Sequence of numbers, concept of limit of a sequence, Null sequence, Bounded sequence, Monotonic sequence, supremum and infimum of a sequence; A convergent sequence is bounded and has a unique limit, Bounded and monotonic sequence is convergent. $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$ Statement of the theorems on limits of sequence, Cauchy sequence, Statement of Cauchy's general principle of convergence, simple problem. Infinite series of constant term: Definition of convergence and divergence, Cauchy's convergence Principle (application only), Geometric series and p-series and their convergence (Only statement). Series of non-negative terms: Statement of comparison test. D' Alembert ratio test, Cauchy's nth root test and Raabe's test. Simple applications. Function of a single real variable defined on an interval, their graphs, Algebra of limits and continuity (no proof). Definition and acquaintance (no proof required) with the properties of continuous function on closed intervals, statement and existence of inverse function of a strictly monotonic function and its continuity. Derivatives - its geometric and physical interpretation, rule of differentiation (a revision of previous knowledge only). Differential its geometrical interpretation and application in finding approximations, relation between continuity and derivability.	P U J A V A C A T I O N	Paper-II, Group-A: Differential Calculus:-Successive derivatives, Leibnitz theorem: increasing and decreasing functions, sign of the derivatives, statement-of Rolle's Theorem and its geometrical interpretation. Mean value theorems of Lagrange's, its geometrical interpretation, Cauchy's mean value theorem. Taylor's and Maclaurin's theorems with Cauchy's mean value theorem. Taylor's and Maclaurin's theorems with Cauchy's and Lagrange's form of remainder (statement only). Expansion in power of x with infinite series for such functions as $exp(x)$, $sin(x)$, $cos(x)$, $(1+x)^n$, $log(1+x)$ (with restrictions wherever necessary). Indeterminate form, L'Hospital's rule, maxima and minima (Differentiations and acquaintance with rules of finding extreme, emphasis on solving problems only). Function of two variables, their geometrical interpretation, limit, repeated limit and continuity (definitions and examples only). Partial differentiation, knowledge of chain rules, Exact differential, Differentiation of implicit functions, successive partial derivatives, statement of Schawarz's theorem on the commutative property of mixed partial derivative, Euler's theorem on a homogeneous function of two variables. Applications: Problem on (i)Tangent and normals. (ii)Rectilinear asymptotes of algebraic curves, (iii)Curvature and radius of curvature of plane curves, (iv)Envelope of family of straight lines.

Sri. S. Sarkar Assistant Professor	 Paper-III, Group-B: Numerical Analysis:- Polynomial interpolation and applications: Lagrangian interpolation problem. Linear interpolation formula. Lagrange's formula. Differences: Forward, backward and divided difference tables. Newton's general interpolation formula with the remainder term, Newton's forward and backward formulae, error in these formulae, Numerical differentiation based on Newton's forward and backward formulae. 	P U J A	Paper-III, Group-B: Numerical Analysis:- Numerical integration: Newton's-Cotes formula, trapezoidal rule, Simpson's one- third rule and inherent errors. Solution of equations (algebraic and transcendental) : Solution of a single equation by (i)Graphical method. (ii) Bisection method. (iii) Regula falsi method. (iv) Iteration method. (v) Newton-Raphson method. Geometrical interpretation of these methods. Convergence of Iteration- and Newton- Raphson method.
Sri. A. De Assistant Professor	Paper-III, Group-A:Linear Programming:-Inequation, definition of linear programming, problems bringing an objective function amongst set of constraints involving inequations. Formation of simple L.P. problems from day to day life, solution of L.P.P. by graphical method, linear dependence of vectors. Basic solutions and basic feasible solutions with reference to L.P.P., Degenerate and non-degenerate B. F. S., hyper-plane, convex set, extreme points, convex hyper-plane and statement of relevant theorems. Statement of the fundamental theorem of L.P.P.	V A C	Paper-III, Group-A: Linear Programming:-Reduction of a F. S. to a B. F. S., Transformation of inequations to equations by slack and surplus variables. Simplex method (without proof), Feasibility and optimality conditions. The algorithm, simple application from daily life. Big-M method, Duality theory, The dual of the dual is primal. Definition of Transportation problem and assignment problem and their connection with L.P.P., algorithmic solution of T.P. and A.P. (no proof is required), simple applications.
	 Paper-II, Group-B: Integral Calculus:- Indefinite Integration: Standard form, Methods by substitution and Integration by parts (Revision of previous knowledge). Integration of rational function and trigonometric function. Definite Integral as the limit of sum, Geometrical interpretation of definite Integrals of bounded continuous functions, Fundamental theorem of integral calculus, Properties of definite integral and their applications. 	A T I O N	Paper-II, Group-B: Integral Calculus :- Reduction formula of $\int_0^{\frac{\pi}{2}} sin^m x dx$, $\int_0^{\frac{\pi}{2}} cos^n x dx$, $\int_0^{\frac{\pi}{2}} sin^m x cos^n x dx$, $\int_{0}^{\frac{\pi}{2}} tan^n x dx$ and associated problems (m and n are non- negatives).Definition of improper integrals, working knowledge of Beta and Gamma functions (convergence and important relations being assumed). Working knowledge of double and triple integrals, Jacobian. Application: Rectification (formation of intrinsic equations from cartesian and polar equation). Quadrature, Volumes and surface area of solids formed by revolution of curves and areas.

Sri. S. Roy	Paper-II, Group-C: DifferentialEquations:-First order linear and non-lineardifferential equations, application insimple geometrical problems.Second order linear differentialequations with constant coefficient,linear homogeneous second orderdifferential equations.	P U J A	Paper-II, Group-C: Differential Equations:- Simultaneous linear differential equation with constant coefficients up to second order. Simple Eigen value problems
Assistant Professor	Paper-III, Group-C: Analytical Dynamics:- Impulse and impulsive forces, work, power and energy, principles of conservation of energy and momentum, collision of elastic bodies (loss of K.E. to be calculated in the case of direct of impact only).	V A C A T	Paper-III, Group-C: Analytical Dynamics:- Motion in a straight line under variable forces, damped, forced and damped forced vibration, motion under inverse square law. Velocity and accelerations of a panicle in cartesian and polar co- ordinates. Tangential and normal accelerations, circular motion. Motion in a plane, equations of motion in cartesian and polar coordinates, central orbits, escape velocity.
	1 st Internal Assessment: 2 nd week of September 2018	I O N	2 nd Internal Assessment: 2 nd week of April 2019

JHARGRAM RAJ COLLEGE DEPARTMENT OF MATHEMATICS Academic Calendar for the Session 2018-2019 B.Sc. Part-III (General)

Name of Faculty	Topic(From 10 th July 2018 to 6 th	Topic(From 26 th November 2018 to 28 th Marsh 2010)
Wember	October 2018)	28 March 2019)
Sri. S. Sarkar Assistant Professor	 Paper-IV, Group-A: Elements of Computer Science:- Computers and their functions and programming: Computers and their function: Information processing. History of data processing machines. Digital Computer, components and their functions and interactions input: storage, control, arithmetic logic and output systems, analogy between the working of a clerk and computer, analog and digital computers. Punched cards and different input / output media applications computers. Elementary Computers Programming: Concepts of machine language, assembly language, different higher level languages and compilers, Fixed and floating point models, constants and variables, subscripted variables, arithmetic expression, Library functions, FORTRAN - 77 : Statements, arithmetic, input, output and control statements. Arithmetic IF, Logical IF, BLOCK IF, DO, CONTINUE, READ, WRITE, PRINT, STOP, END, DIMENSION and FORMAT (List directed, I, E, F, X ,and H specification only). Two dimensional arrays, Date cards. 	 Paper-IV, Group-A: : Elements of Computer Science:- Applications of computer programming: Different steps of solving a problem by a computer. Computer oriented algorithm. Flow- chart. Writing on a coding sheet and computer programmes in FORTRAN for the solution of simple computational problems including problems: Evaluation of functions, Solutions of quadratic equation, Determination of the approximate sum of convergent infinite series sorting. Finite set of numbers in ascending and descending order, Solution of equations by iteration and Newton-Raphson method, Numerical integration by Simpson's one third rule. Boolean Algebra and Applications: Binary arithmetic-binary numbers, binary-to-decimal conversion. Addition, Subtraction, Multiplication and Division of binary numbers. Definition of Boolean algebra by Huntington postulates. Two element Boolean algebra and other examples. Principle of Duality. Basic theorems, Boolean functions. Truth table, Disjunctive and conjunctive normal forms. Theorems on construction of a Boolean function from a truth table and examples. Different binary operations and operators. AND, OR, NOT, NAND, NOR. Bistable devices, Logic Gates-AND, OR, NOT, NAND, NOR (including block diagram and input-output table). Logic Gates representations for Boolean expressions.

Sri. A. De Assistant Professor	Paper-I, Group-B: Elements of Probability Theory: Random experiments, Statistical regularity and idea of probability as long run mutually exclusive event and exhaustive events, union, Intersection and complement, classical definition of probability, axiomatic approach of probability theory (detailed treatment not required), theorem on the union of a number of events, conditional probability, theorem of total probability and Bayes' theorem, independent event and independent trials, random variable and its probability distribution, expectation and variance. Joint, marginal and conditional distribution.	P U J A V A C A T I	Paper-I, Group-B: Elements of Statistics: Qualitative and quantitative characters. Discrete variable and continuous variable, frequency distribution and its graphical representation, measures of central tendency (mean median and mode), measures of dispersion (range, mean deviation and standard deviation), Skewness and Kurtosis, moments and β_1 and β_2 coefficients. Binomial, Poisson and normal distribution. Correlation and regression. Estimation of parameters, maximum likelihood method, interval estimation.
	1 st Internal Assessment:	O	2 nd Internal Assessment:
	2 nd week of September 2018	N	2 nd week of March 2019